公職王歷屆試題 (111年普考)

111 年公務人員普通考試試題

類 科:統計

科 目:統計學概要 吳迪老師解題

一、關於事件 A、B、C,已知 $P(A\cap B)=0.24$, $P(A\cap B|\bar{C})=0.2$,P(C)=0.6, \bar{C} 表 C 的補集。求 $P(A\cap B\cap C)$ 。求 $P(A\cap B\cap C)$ 。(15 分)

【解題關鍵】

- 1. 《考題難易》★
- 2. 《破題關鍵》考古典機率,條件機率,乘法原理,基本題

【擬答】

 $P(A \cap B \cap C) = P(A \cap B) - P(A \cap B \cap \overline{C}) = P(A \cap B) - P(\overline{C}) P(A \cap B \cap)|\overline{C}|$ $= 0.25 - 0.4 \times 0.2 = 0.16$

- 二、三種遺傳型態 A、B、C 在某基因模式下,出線機率分別為 $\theta/6$ 、 $\theta/3$ 、 $(1-\theta/2)$,研究者收集 120 位受測者,A、B、C 人數分別為 10、25、85 人。(每小題 10 分,共 20 分) (一)求 θ 之最大概似估計。
 - 二請問在 α=0.05 下,檢定該模式是否合適?

【解題關鍵】

- 1. 《考題難易》★★★
- 2. 《破題關鍵》考三項分配的最大概似估計式及卡方適合度檢定,常見的考古題,做答時要細心

【擬答】

(-)

$$\begin{split} L(\theta) &= \prod_{i=1}^n f \left(x_i \; ; \; \theta \right) \\ &= \frac{120!}{10! \; 25! \; 85!} \left(\frac{\theta}{6} \right)^{10} \left(\frac{\theta}{3} \right)^{25} \left(1 - \frac{\theta}{2} \right)^{85} \\ &= \frac{120!}{10! \; 25! \; 85!} \times \left(\frac{1}{6} \right)^{10} \left(\frac{1}{3} \right)^{25} \left(\frac{1}{2} \right)^{85} \theta^{35} (2 - \theta)^{85} \\ &\Rightarrow \ell_n L(\theta) = \ell_n \left[\frac{120!}{10! \; 25! \; 85!} \times \left(\frac{1}{6} \right)^{10} \left(\frac{1}{3} \right)^{25} \left(\frac{1}{2} \right)^{85} \right] + 35\ell_n \theta + 85\ell_n (2 - \theta) \\ &\Rightarrow \frac{\partial \ell_n L(\theta)}{\partial \theta} = \frac{35}{\theta} - \frac{85}{2 - \theta} = \frac{70 - 120Q}{\theta (2 - \theta)} = 0 \\ &\Rightarrow 70 - 120\theta = 0 \Rightarrow \theta = \frac{7}{12} \\ &\mathbb{E} \left(\frac{\partial^2 \ell_n L(\theta)}{\partial \theta^2} \right)_{\theta = \frac{7}{12}} < 0 \\ &\therefore \theta \Leftrightarrow MLE \gtrsim \frac{7}{12} \end{split}$$

 $(\underline{})$

	A	В	C
O_i	10	25	85
P_i	$\frac{7}{72}$	$\frac{7}{36}$	$\frac{17}{24}$
ei	11.67	23.33	85

共6頁 第1頁

全國最大公教職網站 https://www.public.com.tw

公職王歷屆試題 (111年普考)

 $\begin{cases} H_0: 該模式適合 \end{cases}$

H₁: 該模式不適合

 $\alpha = 0.05$

拒絕域 $C = \{\chi^2 | \chi^2 > \chi^2_{0.05}(2) = 5.99147\}$

檢定統計量

$$\chi^2 = \sum \frac{(O_i - e_i)^2}{e_i} = \frac{(10 - 11.67)^2}{11.67} + \frac{(25 - 23.33)^2}{23.33} + \frac{(85 - 85)^2}{85}$$

 $= 0.3585 \notin C \Longrightarrow notReHo$

結論:沒有證據顯示該模式不適合

三、八位受試者接受某降膽固醇藥物,接受前先測量一次,接受後再測量一次,結果如下表。下降表示該藥物有效果。請以符號檢定(Sign test)在 α =0.05 顯著水準下檢定 H_1 :藥物對降膽固醇有效果。(20 分)

受試者	1	2	3	4	5	6	7	8
前	51	48	52	62	64	51	55	60
後	46	45	53	48	57	55	42	50

【解題關鍵】

- 1. 《考題難易》★★
- 2. 《破題關鍵》無母數中的符號檢定為這幾年常見的考題, 應可拿分

【擬答】

 $\{H_0: \eta_1 \leq \eta_2\}$

 $\{H_1: \eta_1 > \eta_2$

受試者	1	2	3	4	5	6	7	8
前 X	51	48	52	62	64	51	55	60
後Y	46	45	53	48	57	55	42	50
D=X-Y	+	+	-	+	+	-	+	+

 $\alpha = 0.05$

$$D(+)=6$$
 , $D(-)=2$

 $S=min\{D(+), D(-)\}=2$

$$P - Value = P(x \le s) = P(x \le 2) = \sum_{x=0}^{2} C_x^8 (\frac{1}{2})^8 = 0.1445$$

因為 P-Value=0.1445>0.05= α ⇒notReHo

結論:沒有證據顯示藥物對降膽固醇有效果

公職王歷屆試題 (111年普考)

四、教育當局想測試 A、B 兩區學童數學程度是否相同,A 區 250 位學童受測,及格比率 0.40, B 區 200 位學童受測,及格比率 0.37。請以 α=0.01 顯著水準下檢定兩區學童數學測試及革之 比例是否相同? (25 分)

【解題關鍵】

- 1. 《考題難易》★
- 2. 《破題關鍵》兩獨立母體比例的檢定, 基本題

【擬答】

設PI為A區及格比例

P2為B區及格比例

$$(H_0: P_1 = P_2)$$

$$\{H_1: P_1 \neq P_2\}$$

$$\hat{P}_1 = 0.4$$
 $\hat{P}_2 = 0.37$,合併比例 $\hat{P} = \frac{250 \times 0.4 + 200 \times 0.37}{250 + 200} = 0.39$

因為大樣本,利用 Z 檢定

 $\alpha = 0.01$

拒絕域 $C = \{Z|Z > 2.575$ 或 $Z < -2.575\}$

檢定統計量

$$Z = \frac{\left(\hat{P}_1 - \hat{P}_2\right) - (P_1 - P_2)}{\sqrt{\frac{\hat{P}(1 - \hat{P})}{n_1} + \frac{\hat{P}(1 - \hat{P})}{n_2}}} = \frac{(0.4 - 0.37) - 0}{\sqrt{\frac{0.39 \times 0.61}{250} + \frac{0.39 \times 0.61}{200}}} = 0.648 \notin C \Rightarrow notReHo$$

結論:沒有證據顯示兩區學童數學測試及格之比例不同

五、反應變數 Y 在三組(以類別變數 X=1,2,3 表示)中的母體平均為 u_1 、 u_2 、 u_3 。為比較此三平均之差異,會將 X 轉成 2 個虛擬變數 x_1 、 x_2 ,然後配適迴歸模式 $Y=\beta_0+\beta_1x_1+\beta_2x_2+\epsilon$ 。假設三組樣本數相同。

若虛擬變數 (x1, x2) 的設定為:

X=1 時, $x_1=1$, $x_2=0$

X=2 時, $x_1=0$, $x_2=1$

X=3 時, $x_1=0$, $x_2=0$

結果顯示: β_1 顯著大於 0 而 β_2 顯著小於 0。請依此比較 $u_1 \cdot u_2 \cdot u_3$ 的大小。 (20 分)

【解題關鍵】

- 1. 《考題難易》★★
- 2. 《破題關鍵》考多元迴歸分析中的啞變數, 比較平均數的大小, 對統計類組的考生應可拿分

【擬答】

$$(1)x_1 = 0, x_2 = 0$$
代入得 $Y = \beta_0 = \mu_3$

$$(2)x_1 = 1, x_2 = 0$$
代入得 $Y = \beta_0 + \beta_1 = \mu_1$

$$\Rightarrow \mu_3 + \beta_1 = \mu_1 \Rightarrow \beta_1 = \mu_1 - \mu_3 > 0 \Rightarrow \mu_1 > \mu_3$$

$$(3)x_1 = 0$$
, $x_2 = 1$ 代入得 $Y = \beta_0 + B_2 = \mu_2$

$$\Rightarrow \mu_3 + \beta_2 = \mu_2 \Rightarrow \beta_2 = \mu_2 - \mu_3 < 0 \Rightarrow \mu_3 > \mu_2$$

由(1)(2)(3)可得 $\mu_1 > \mu_3 > \mu_2$

志光×保成×學儒)適合非上榜不可的你

高普考取班。大保障 「次繳費」

學費省很大

考取班全年課程不間 斷,一次繳清學費輔 導至考取。

師資最多元

重點科目安排多元師 資,雙循環教學,可 旁聽加強弱科,強化 上榜實力。

課程最完整

完整課程循環,基礎 班→正規班→專題課 →總複習…等,全部 擁有。

加選最超值

輔導期間可加選其他 科目增加考試機會, 加選另享專案優惠。

上榜賺獎金

報名考取班第一年考 取同職等考試,頒發 高額獎學金。

榜單最實在

年年榜單見證,錄取 人數最多,錄取率最 高,奪榜實力全國第

學習最便利

輔導期間可依自己時 間選擇面授或視訊學 習,提高學習效率。

公約有保障

考取班簽訂公約,保 障您的權利與義務至 考取為止。

- 完整課程資訊詳洽全國志光・保成・學儒門市 -

112年 虚實整合

多元學習新型態

突破傳統上課形式 5大方式彈性又便利

| 面授學習 | 直播學習 | 在家學習 | 視訊學習 | Wifi學習 |

◆學習◆ 零時差 同類科各班別 皆可同步直播上課 ◆服務◆ 零死角 服務緊貼需求 隨時掌握學習狀況

線上 課業諮詢

老師申論批閱

雙師資 雙循環

多元 補課方式

上榜生 經驗親授

時事 專題講座

歷屆試題 練習

班導師 制度

各班服務略有不同,詳情請洽全國志光、保成、學儒門市

附表一、 χ^2 分配右尾百分點 $\chi^2_{\alpha}(df)$

_								
1/2	.995	.990	.975	.950	.050	.025	.010	.005
1	392704 × 10-	10 157088 × 10	982069 × 10	⁻⁹ 393214 × 10 ⁻⁸	3.84146	5.02389	6.63490	7.87944
2	.0100251	.0201007	.0506356	.102587	5.99147	7.37776	9.21034	10.5966
3	.0717212	.114832	.215795	.351846	7.81473	9.34840	11.3449	12.8381
4	.206990	.297110	.484419	.710721	9.48773	11.1433	13.2767	14.8602
5	A11740	.554300	.831211	1.145476	11.0705	12.8325	15.0863	16.7496
6	.675727	.872085	1.237347	1.63539	12.5916	14.4494	16.8119	18.5476
7	.989265	1.239043	1.68987	2.16735	14.0671	16.0128	18.4753	20.2777
8	1.344419	1.646482	2.17973	2.73264	15.5073	17.5346	20.0902	21.9550
9	1.734926	2.087912	2.70039	3.32511	16.9190	19.0228	21.6660	23.5893
10	2.15585	2.55821	3.24697	3.94030	18.3070	20.4831	23.2093	25.1882
11	2.60321	3.05347	3.81575	4.57481	19.6751	21.9200	24.7250	26.7569
12	3.07382	3.57056	4.40379	5.22603	21.0261	23.3367	26.2170	28.2995
13	3.56503	4.10691	5.00874	5.89186	22.3621	24.7356	27.6883	29.8194
14	4.07468	4.66043	5.62872	6.57063	23.6848	26.1190	29.1413	31.3193
15	4.60094	5.22935	6.26214	7.26094	24.9958	27.4884	30.5779	32.8013
16	5.14224	5.81221	6.90766	7.96164	26.2962	28.8454	31.9999	34.2672
17	5.69724	6.40776	7.56418	8.67176	27.5871	30.1910	33.4087	35.7185
18	6.26481	7.01491	8.23075	9.39046	28.8693	31.5264	34.8053	37.1564
19	6.84398	7.63273	8.90655	10.1170	30.1435	32.8523	36.1908	38.5822
20	7.43386	8.26040	9.59083	10.8508	31.4104	34.1696	37.5662	39.9968
21	8.03366	8.89720	10.28293	11.5913	32.6705	35.4789	38.9321	41.4010
22	8.64272	9.54249	10.9823	12.3380	33.9244	36.7807	40.2894	42.7956
23	9.26042	10.19567	11.6885	13.0905	35.1725	38.0757	41.6384	44.1813
24	9.88623	10.8564	12.4011	13.8484	36.4151	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	37.6525	40.6465	44.3141	46.9278
26	11.1603	12.1981	13.8439	15.3791	38.8852	41.9232	45.6417	48.2899
27	11.8076	12.8786	14.5733	16.1513	40.1133	43,1944	46.9630	49.6449
28	12.4613	13.5648	15.3079	16.9279	41.3372	44.4607	48.2782	50.9933
29	13.1211	14.2565	16.0471	17.7083	42.5569	45.7222	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4926	43.7729	46.9792	50.8922	53.6720
40	20.7065	22.1643	24.4331	26.5093	55.7585	59.3417	63.6907	66.7659
50	27.9907	29.7067	32.3574	34.7642	67.5048	71.4202	76.1539	79.4900
60	35.5346	37.4848	40.4817	43.1879	79.0819	83.2976	88.3794	91.9517
70	43.2752	45.4418	48.7576	51.7393	90.5312	95.0231	100.425	104.215
80	51.1720	53.5400	57.1532	60.3915	101.879	106.629	112.329	116.321
90	59.1963	61.7541	65.6466	69.1260	113.145	118.136	124.116	128.299
100	67.3276	70.0648	74.2219	77.9295	124.342	129.561	135.807	140.169

附表二、常態分配表

$$P(Z \le z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-w^{2}/2} dw$$
$$[\Phi(-z) = 1 - \Phi(z)]$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.8700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7861	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.B159	0.8186	0.8212	0.8238	0.B264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.B531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	Q.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9952	0.9963	0.9954
2.7	0.9965	0.9966	0.9967	0.9968	0.8969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8		-0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.8979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
a	0.400	0.300	0.200	0.100	0.050	0.025	0.010	0.006	0.001	
Za	0.253	0.524	0.842	1.262	1.645	1,960	2.326	2.576	3.090	
		1.036	1.282	1.645	1.950	2.240	2.576	2.807	3.291	
$Z_{a/2}$	1				1.555	2.240	2.070	2.007	3.231	